The canonical module of an associated graded ring

ثبت نشده
چکیده

Theorem. Let R be a Cohen-Macaulay ring (locally, always) 1 c R an ideal o f height at least 2, S the Rees ring of R with respect to I, and G = S /S I the associated graded ring. Assume that S and G are Cohen-Macaulay rings, and that S has a canonical module cos. Then G has a canonical module r and: (i) I f co s can be embedded into S such that cos (considered as an ideal now) is not contained in a minimal prime ideal o f S I or S i t , then co~ ~(cos + SI)/S1. (ii) Such an embedding exists i f and only i f the localizations Se with respect to the prime ideals P ~ S minimal over O, S I or S i t are Gorenstein rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

Graded Prime Ideals Attached to a Group Graded Module

Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...

متن کامل

On the Gorenstein Property of the Fiber Cone to Filtration

Let (A,m) be a Noetherian local ring and F = (In)n≥0 a filtration. In this paper, we study the Gorenstein properties of the fiber cone F (F), where F is a Hilbert filtration. Suppose that F (F) and G(F) are CohenMacaulay. If in addition, the associated graded ring G(F) is Gorenstein; similarly to the I-adic case, we obtain a necessary and sufficient condition, in terms of lengths and minimal nu...

متن کامل

On graded almost semiprime submodules

Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring with a non-zero identity and $M$ be a graded $R$-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005